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turbation technique, based on assuming a solution in the form

@
= Z euiZ,'
i=1

To the first order in ey, the result is

«©
xr = Z eofx,-
i=1

xz = 2C + A cosyy + B siny, +
es(—3A4 + A cosvy — B sinvy + 4 cos2v 4
%B Sil'l21)q - 301)0 sinvo)
y = D — 3Cv — 24 sinvg + 2B cosvy +

(349, — 24 sinvy + 2B cosvy —% A sin2u +
1B cos2vy + 6C sinyg — 6w, sinvy)

z = I cosw + F sinvy + e[32E — £E cosvp — :
3E cos2vy + 3F sinvg — LF sin2u]

Note the appearance of ‘“‘secular” terms with vy, v cosvy, and
vy sinyy and the appearance of higher harmonics in the terms
that have ¢ as factor. The secular terms are of course un-
avoidable since they indicate the continuously growing rela-
tive distance between two points in close orbits of slightly
different period. It is interesting to note that no terms with
v appear, even if the solution is carried out to include eg?.
It is not surprising that the integration constant C' is closely
connected with the semimajor axis; it is, on the other hand,
somewhat surprising that very simple relations exist between
the other integration constants and elliptic parameters.
In terms of the initial condition of relative position and ve-
locity, the integration constants are

A = —(3z(0) 4 2y'(0))
B = a'(0) B=20 -
C = 22(0) + y'(0) F =20

A comparison with Eqs. (14) shows that the integration con-
stants are precisely the changes in the orbital elements at
least as far as first-order terms in the relative positions and
velocities are concerned.

D = y(0) — 2z'(0)
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A Note on Lunar Librations
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LTHOUGH itis considered that gravity-gradient torque is
insufficient by itself for attitude control of artificial
satellites, the mechanically equivalent phenomenon of lunar
librations is nevertheless of great technical interest. Recent
studies of the satellite problem disclose basic features of the
motion, equally valid for the moon, but not elucidated in the
specialized literature on that subject. Aside from the funda-
mental interest in a classic problem and possible new basis for
interpretation of amassed observational data, the results are
important for the newer stability analysis.

The fact that the moon persistently presents the same face
toward earth, enunciated more than two centuries ago as
Cassini’s first law, stimulated researches by Lagrange,
Laplace, and many others. Departures from this idealized
motion, termed physical librations, are of such small ampli-
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tude as to have thwarted all attempts to measure them as-
tronomically, a fact the more remarkable in view of the nearly
perfect symmetry of lunar mass distribution. From the
purely physical viewpoint, nothing less than mathematical
proof is needed to lend plausibility to an obvious fact so much
at variance with intuition.

Librational motion about a mass center itself in nonuniform
motion is described by Euler’s equations of rigid-body motion,
extended to include effects of relative motion. This system of
three coupled partial differential equations for the lunar
motion, strictly nonlinear, has classically been treated by
studying motion slightly perturbed from equilibrium and by
further limiting the analysis to the longitudinal motion that is
then uncoupled.® The remaining two modes, termed physical
libration in inclination and physical libration in node, have
meanwhile been essentially neglected. Although these two
strongly coupled modes appear at first sight to be the most
formidable ones from the mathematical standpoint, it will

- now be shown that important properties of these modes are

revealed by applying directly the more detailed treatments
given in satellite studies. In addition, these characteristics
strongly suggest that the traditional preference for isolating
longitudinal motion was an unfortunate choice made long ago
and not corrected by later workers.

Free lunar librations for idealized Keplerian motion in a
cireular orbit are governed by equations given in Ref. 1; with
unimportant changes of notation to conform with standard
usage in the literature on that subject, these are

a+m(C;B>a—9(1—CzB>5=o )
oL o (C— 4 c—4\, _
ﬁ+4&2< = )[S’-i—ﬂ(l— : >a_o @

v+ 0 (B2 4) v =0 @

Here A,B,C and «,8,7v denote, respectively, principal inertia
moments and small angular displacements from equilibrium
for nodal (i.e., earth-pointing), inclination (i.e., moon lati-
tude), and longitudinal components of the physical libration,
and Qis lunar orbital angular speed. The nearly symmetrical
mass distribution is shown by the smallness of the dimension-
less inertia differences, which have numerical values given by
(see, e.g., Ref. 2)

(C — 4)/C = 0.000627 (B—4)/C =0.000118 (4)

Denoting these for convenience by e; and e, respectively, the
third one of the differences that appear in the system of equa-
tions, denoted by e, is closely obtained as the difference
& — &; these three quantities then satisfy the important
inequalities

0<a< < e (5)

Equation (3) shows that longitudinal libration is uncoupled
from the other modes, with period of free oscillation inversely
proportional to the square root of €; its numerical value is
about 53 months. This is the part of the motion examined
theoretically and sought unsuccessfully through observations
started by Bessel more than 100 years ago. Principal atten-
tion in modern times has centered around the forced motion
resulting from solar attraction and orbital ellipticity.

Physical librations in node and inclination, described by
Eqgs. (1) and (2), are obviously strongly coupled by the first
derivative terms of order unity. Each equation admits
harmonic solutions, and it is found that physical libration in
inclination “leads” the nodal motion with a phase angle nearly
equal to 90°. Of perhaps even greater importance from
standpoint of observation is the fact that one of the two
periods of free motion is very much smaller than the other,
small even when compared with the period of free longitudinal
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motion. One of these is closely given by 1 — $e;, where the
unit of time is the 1-month lunar orbital period; the other is

similarly given by
i <1 _ 2) —1/2
2€3 €

Using the numerical values given by (4), these periods cor-
respond very nearly to 1 month and to 870 months, respec-~
tively. Whereas the very long-period motion presents ob-
vious obstacles from the point of view of measurements for
any significant part of even one oscillation, the shortest-period
motion, viz., the coupled nodal-inclination mode of period 1
month, is a distinctly more attractive prospect for observa-
tion. The shortness of the period also justifies neglecting
effects of long-period forcing functions such as the dominant
solar attraction.

In summary, it has been shown that the near-symmetry
of lunar mass distribution leads to sharply distinguishable
dynamic characteristics, and that the mode of shortest period,
almost completely overlooked in the past, is a combined
motion in node and inclination, interrelated in an elementary
manner. The same distinctions should also prove useful as
guides for the construction of Liapunov functions required in
the application of direct methods for the nonlinear stability
problem, where once again the moon should serve as a shining
example in a new class of studies in dynamics.
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An Explicit Guidance Concept
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Nomenclature
AB = thrust integrals, defined specifically by Eq. (1)
F = thrust vector
J1,Je,J3 = time integrals defined specifically by Eq. (3)
m = mass

r = central body radius vector to vehicle

S = slant range vector from target to vehicle
¢ = time

V; = effective exhaust velocity

X,Y,Z = inertial, target centered, Cartesian coordinate system
] = coangle between thrust vector and Z axis

b = central body gravitational constant = ¢gR?

£ = predicted propellant mass fraction to be consumed
during burning

T = burning time

¥ = angle between X axis and projection of Fin X-Y plane

® = mean motion = {u/[g{re + r)]%} V2

Superscript )

() = derivative with respect to time

Subscript

c = command value

n = refers to value corresponding to nth step

0 = at time zero

t = at landing site

This development was presented as an Appendix to Ref. 1 at

the ARS Lunar Missions Meeting, Cleveland, Ohio, July 17—,

19, 1962.
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N the text of Ref. 1, a solution was obtained for the differ-

ential equation of motion for a particle in a uniform central

force field under the influence of a force F and of a mass m.
This solution is of the form

r = (ro — B) coswr + (1/w)(to + wA) sinwr o
it = (t; + wA) coswr — w(rp — B) sinwr

where

A = lfTEcoswtdt
w JO m

B = 11;- foT 2 sinwt df
The components of the thrust vector F are assumed to
have the following time-dependent form:
F. () = F@©) cos(8 4 65) cos(¢ + )
F () = F(t) cos(8 + 6t) sin(y + ) (2)
F(t) = F(¢) sin(0 + 6t

If the thrust is assumed to be constant and 8 and  are as-
sumed to be of the same order as w, then analytic solutions
for A and B may be achieved. These are given below as
Eqgs. (3), correct to first order in wr:

A, = (1/w)[J1 cost cosy — ]
Jo(f sind cosy +  siny cosf)]
A, = 1/wlJ; cosf sinyg —

Jo(0 sind siny — ¢ cosy cos)]
A, = (1/w)(Jy sind + J46 cosh)
B, = J, cosf cosyy — Js(8 sind cosy + ¢ siny cosf) @)
B, = J, cosf sinyg — J3(f sinf sing — ' cosy cosh)
B, = Jysinf + Js6 cosd
Ji = —V;In( — £
Jo = (v/E(h — Vib)
Js = (7/8)(J. — 3Virh)

where

Vi=F/m £ = mr/m

Tt is now possible to solve explicitly for 8.,8.,¢., and ..
The procedure is as follows. Let there be specified some
final position and velocity vector, r, and #, which is to be
achieved at time = 7. These shall satisfy Eqs. (1). With
this substitution, rearrangement yields

COSwT

@ < It ~r> = —Bw + (f + wA) tan wr
@)

( I —r’> = wA + wB — r) tan or

CoSwT

where, for convenience, the subscript 0 has been dropped.
Equations (4) yield solutions for A and B as follows:
A = r, sinwr — 1/wAf
, . (5
B = Ar -+ i,/wsin wr
where
Ar =r — r, cOSWT At = — I, coswr

The values attained from ¥gs. (5) for A and B, of necessity,



